ارزیابی کارایی مدل درخت تصمیم رگرسیونی در پیشبینی خشکسالی نمونة موردی: ایستگاه سینوپتیک سنندج
Authors
Abstract:
برای مطالعة خشکسالی روشهای مختلفی وجود دارد. روش تحلیل دادههای بارندگی، جزو عمومی روش های تحلیل خشکسالی به شمار می رود؛ لذا پیشبینی دقیق و پیش از وقوع بارش می تواند شرایط را برای ارزیابی وضعیت خشکسالی فراهم نماید. هدف این پژوهش، بررسی تأثیر پیشپردازشِ دادههای بارش ماهانة ایستگاه سینوپتیک سنندج بر عملکرد مدل درخت تصمیم در پیشبینی خشکسالی در ایستگاه سینوپتیک سنندج میباشد. در این پژوهش از الگوریتم CART به عنوان یکی از انواع درختان تصمیم رگرسیونی جهت پیشبینی بارش 12 ماه بعد استفاده شده و جهت ارزیابی درختهای ایجاد شده از معیارهای آماری مختلف استفاده شدهاست. دادههای مورد استفاده در این پژوهش مربوط به آمار ماهانة بارندگی، رطوبت نسبی، دمای حداکثر، دمای متوسط، جهت باد و سرعت باد در دورة آماری (1389- 1349) است. نتایج حاصل از پژوهش نشان میدهد که در ایستگاه سینوپتیک سنندج درخت تصمیمگیری رگرسیونی، مدلی نسبتاً کارا درپیشبینی خشکسالی میباشد؛ به طوری که درشبیه سازی های صورت گرفته، زمانی که از میانگین متحرّک پنج سالة داده ها برای اجرای مدل استفاده گردید، ترکیب بارش قبلی و دمای حداکثر به عنوان مناسبترین حالت با مقدار خطای 06/0 شناسایی شده و اعمال میانگین متحرک روی دادههای اصلی در بهبود کارایی مدل مؤثر است. در این شرایط، روش درخت تصمیم رگرسیونی ایستگاه سنندج با ضریب اطمینان بالایی میزان بارش را 12 ماه پیش از وقوع بر آورد نمایند.
similar resources
ارزیابی کارایی مدل درخت تصمیم رگرسیونی در پیش بینی خشکسالی نمونه موردی: ایستگاه سینوپتیک سنندج
برای مطالعه خشکسالی روش های مختلفی وجود دارد. روش تحلیل داده های بارندگی، جزو عمومی روش های تحلیل خشکسالی به شمار می رود؛ لذا پیش بینی دقیق و پیش از وقوع بارش می تواند شرایط را برای ارزیابی وضعیت خشکسالی فراهم نماید. هدف این پژوهش، بررسی تأثیر پیش پردازش داده های بارش ماهانه ایستگاه سینوپتیک سنندج بر عملکرد مدل درخت تصمیم در پیش بینی خشکسالی در ایستگاه سینوپتیک سنندج می باشد. در این پژوهش از ال...
full textبررسی کارایی مدل درخت تصمیم در پیش بینی بارش (مطالعه موردی ایستگاه سینوپتیک یزد)
وقوع خشکسالی اثرات نامطلوبی بر بخشهای کشاورزی و اقتصادی کشور و به طور خاص بر عرصههای طبیعی تحمیل میکند. امروزه روشهای مختلفی جهت پیش بینی مؤلفههای اصلی خشکسالی از جمله بارش ارائه شده است. در دهههای اخیر، استفاده از مدلهای جدید کامپیوتری در این زمینه رواج یافته و در اغلب موارد توانایی خود را به خوبی نشان داده است. درخت تصمیم به عنوان یکی از این نوع مدلها، با بررسی پارامترها از جزء به کل،...
full textبررسی کارایی مدل درخت تصمیم در پیش بینی بارش (مطالعه موردی ایستگاه سینوپتیک یزد)
وقوع خشکسالی اثرات نامطلوبی بر بخش های کشاورزی و اقتصادی کشور و به طور خاص بر عرصه های طبیعی تحمیل می کند. امروزه روش های مختلفی جهت پیش بینی مؤلفه های اصلی خشکسالی از جمله بارش ارائه شده است. در دهه های اخیر، استفاده از مدل های جدید کامپیوتری در این زمینه رواج یافته و در اغلب موارد توانایی خود را به خوبی نشان داده است. درخت تصمیم به عنوان یکی از این نوع مدل ها، با بررسی پارامترها از جزء به کل،...
full textپیش بینی خشکسالی در ایستگاه سینوپتیک یزد با استفاده ازمدل درخت های تصمیم گیری
چکیده کشور ایران به لحاظ قرار گرفتن درکمربند خشک جغرافیایی، در زمره مناطق کم باران محسوب می گردد. علاوه بر آن نوسانات شدید بارش در مناطق مختلف کشور، وقوع خشکسالی های ضعیف تا شدید را به موضوعی گریز ناپذیر تبدیل نموده است. وقوع این خشکسالی ها اثرات نامطلوب شدیدی بر بخش های کشاورزی و اقتصادی کشور و به طور خاص بر عرصه های طبیعی تحمیل می کند. امروزه روش های مختلفی جهت پیش بینی خشکسالی ارائه شده ا...
15 صفحه اولپیشبینی خشکسالی با استفاده از مدل ترکیبی GEP-GARCH(مطالعه موردی: ایستگاه سینوپتیک سلماس)
پیشبینی خشکسالی نقش مهمی در طراحی سیستمهای سازگاری با خشکسالی و اجرای عملیات تسکین ایفا مینماید. دادههای هیدرولوژیک بهصورت ترکیبی از بخش قطعی و تصادفی میباشند. با توجه به اینکه دادههای تولیدی مدلهای هوشمند بهصورت قطعی میباشند، استفاده از رویکردی جدید برای اعمال بخش تصادفی در پیشبینی این دادهها میتواند قطعیت مدل را افزایش دهد. در این تحقیق با ترکیب مدل برنامهریزی بیان ژن (GEP) و مد...
full textMy Resources
Journal title
volume 4 issue 6
pages 1- 19
publication date 2016-02-20
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023